Search results for "buchnera aphidicola"
showing 3 items of 3 documents
Settling Down: The Genome of Serratia symbiotica from the Aphid Cinara tujafilina Zooms in on the Process of Accommodation to a Cooperative Intracell…
2014
Particularly interesting cases of mutualistic endosymbioses come from the establishment of co-obligate associations of more than one species of endosymbiotic bacteria. Throughout symbiotic accommodation from a free-living bacterium, passing through a facultative stage and ending as an obligate intracellular one, the symbiont experiences massive genomic losses and phenotypic adjustments. Here, we scrutinized the changes in the coevolution of Serratia symbiotica and Buchnera aphidicola endosymbionts in aphids, paying particular attention to the transformations undergone by S. symbiotica to become an obligate endosymbiont. Although it is already known that S. symbiotica is facultative in Acyrt…
Reinventing the Wheel and Making It Round Again: Evolutionary Convergence in Buchnera-Serratia Symbiotic Consortia between the Distantly Related Lach…
2016
International audience; Virtually all aphids (Aphididae) harbor Buchnera aphidicola as an obligate endosymbiont to compensate nutritional deficiencies arising from their phloem diet. Many species within the Lachninae subfamily seem to be consistently associated also with Serratia symbiotica We have previously shown that both Cinara (Cinara) cedri and Cinara (Cupressobium) tujafilina (Lachninae: Eulachnini tribe) have indeed established co-obligate associations with both Buchnera and S. symbiotica However, while Buchnera genomes of both Cinara species are similar, genome degradation differs greatly between the two S. symbiotica strains. To gain insight into the essentiality and degree of int…
A genomic reappraisal of symbiotic function in the aphid/Buchnera symbiosis: reduced transporter sets and variable membrane organisations.
2011
International audience; Buchnera aphidicola is an obligate symbiotic bacterium that sustains the physiology of aphids by complementing their exclusive phloem sap diet. In this study, we reappraised the transport function of different Buchnera strains, from the aphids Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistaciae and Cinara cedri, using the re-annotation of their transmembrane proteins coupled with an exploration of their metabolic networks. Although metabolic analyses revealed high interdependencies between the host and the bacteria, we demonstrate here that transport in Buchnera is assured by low transporter diversity, when compared to free-living bacteria, being mostly bas…